Écrit par Administrator Samedi, 17 Mars 2012 18:04 - Mis à jour Mercredi, 21 Mars 2012 16:31

There are no translations available.

Utilizzando la legge di Kirchoff l'assorbanza spettrale può essere espressa in termini di riflettanza totale \Box (\Box , \Box) per un dato materiale opaco:

 $\Box (\Box, \Box) = 1 - \Box (\Box, \Box)$

 $\Box \ (\Box, T) = \Box \ (\Box, T)$

dove \square (\square , \square) è la somma sia della riflessione diretta che diffusa dalla superficie, \square è la lunghezza d'onda,

è l'angolo di incidenza della luce e T è la temperatura.

$$\varepsilon(T) = \frac{\int_{0}^{\infty} [1 - \rho(\lambda, T)] E(\lambda, T) d\lambda}{\sigma T^{4}}$$

dove \Box è la costante di Boltzmann (5,67 10⁻⁸ W m⁻² K⁻⁴) e E(\Box , T) è l'irraggiamento spettrale del corpo nero, dato da:

$$E(\lambda, T) = \frac{C1}{\lambda^5 \left(e^{\frac{C''}{\lambda T}} - 1\right)}$$

dove C1 = 3,7 10
8
 W \square 4 m⁻² e C2 = 1,44 10 4 \square K

Se i limiti di integrazione sono relativi alle bande spettrali della radiazione solare o dell'emissione termica del ricevitore, le formule di cui sopra restituiscono rispettivamente l'assorbanza o l'emittenza totale utile per il bilancio termico del dispositivo.

Écrit par Administrator Samedi, 17 Mars 2012 18:04 - Mis à jour Mercredi, 21 Mars 2012 16:31

Nelle figure seguenti (A4.24 ed A4.25) si riportano i valori di assorbenza ed remittenza utilizzati nel recente progetto ENEL – ENEA dei tubi ricevitori dei collettori solari dell'impianto "Archimede"

Fig. A4.24 – Dati del ricevitore selettivo progetto "Archimede"

Fig 4/ 27 – Formazione di macchia solare da specchio piano

Écrit par Administrator Samedi, 17 Mars 2012 18:04 - Mis à jour Mercredi, 21 Mars 2012 16:31

